PREPARATION AND REACTIONS OF X -KETO-KETENE MERCAPTALS

Israel Shahak and Yoel Sasson

Department of Organic Chemistry Hebrew University of Jerusalem Jerusalem, Israel.

(Received in UK 22 August 1973; accepted for publication 12 September 1973)

The reaction of carbon disulphide with anions of compounds having two electron-withdrawing groups, like diethylmalonate and ethylacetoacetate has been known for a long time and recently was extensively studied⁽¹⁻⁴⁾. The less activated aliphatic ketones react in several steps, with carbon disulphide and methyl iodide in the presence of various bases to yield \ll -keto-ketene mercaptals.⁽⁵⁻¹⁰⁾

We have found that this series of reactions can be shortened by the use of carbon disulphidemethyl iodide-sodium hydride, a new combination not used simultaneously before. Addition of a ketone to this mixture is a fast reaction and accompanied by a methylene group is transformed into a ketene dimethyl mercaptal. The reaction occurs readily both with methylene and methyl groups and two such groups from both sides of a ketone react simultaneously (eqs. 1 and 2).

(1)
$$R_1 \operatorname{coch}_2 R_2 + 2NaH + CS_2 + 2CH_3 I \longrightarrow R_1 \operatorname{coc}(R_2) = C(SCH_3)_2 + 2NaI + H_2$$

(2) $R_1 \operatorname{ch}_2 \operatorname{coch}_2 R_2 + 4NaH + 2CS_2 + 4CH_3 I \longrightarrow (CH_3S)_2 C = C(R_1) \operatorname{coc}(R_2) = C(SCH_3)_2$
+ 4NaI + 2H_2

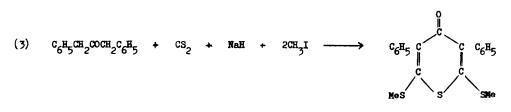
For example, 7.5 g 4-methoxyacetophenone (0.05 mole) is mixed with 3 g sodium hydride (80% in mineral oil, 0.1 mole), 6 g carbon disulphide (0.075 mole), 22.5 g methyl iodide (0.15 mole) and 80 ml of dry benzene. Dimethyl acetamide (10 ml) is added in portions and the mixture is stirred with occasional cooling for one hour. 40 g of ice and 200 ml water were added and the benzene extract of the mixture then yielded 8.2 g (80%) of 1-(4-methoxyphenyl)-3-dimercaptomethylpropen-1-one, $m.p. 103^{\circ}$.

Results of experiments with several other ketones (mono- and di-substituted) are summarized in Tables I and II.

Table I

No.	Starting ketone	Yield(%)	mp/bp	C=0(cm ⁻¹)	λ max(mµ)	(S-CH3)ppm
1	Diethylketone	30	94-6°/0.5mm	1645	305	2.20, 2.24
2	Pinacolone	45	162 -4⁰/35mm	1635	317	2.20, 2.27
3	Cyclohe xanone	23	118-22 ⁰ /0.3mm	1615	310	2.20, 2.25
4	4-Methoxyacetophenone	80	103 ⁰	159 5	345	2.25, 2.30
5	4-Chloroacetophenone	77	C4°	1610	350	2.22, 2.27
6	4-Bromoacetophenone	75	108 ⁰	1610	350	2.22, 2.27
7	6-Methoxytetralone	60	78 ⁰	1590	355	2.30, 2.35
8	Desoxybenzoin	65	108 ⁰	1653	350	2.19, 2.25

Results and spectral data for mono-substituted ketones^a (eq. 1)


Table II

desults and spectral data for disubstituted ketones^a (eq. 2)

No.	Starting ketone	Yield(%)	mp/bp	C=0(cm ⁻¹)	max(mu)	(S-CH ₃)ppm
9	Acetone	33	134 ⁰	1590	365	2.40
10	Diethylketone	43	112 ⁰	1625	320	2.22, 2.27
11	Cyclohexanone	35	198-200 ⁰ /0.3mm	1610	330	2.24, 2.29

a For all compounds good analyses were obtained.

Dibenzylketone proved an exception giving a 1-thia- -pyrone derivative (eq. 3)

The reaction was also tried on simple esters. Here competition with a Claisen condensation was observed and esters like ethyl acetate and diethyl succinate gave very small yields of the corresponding ketene mercaptals. However, in the case of ethylphenylacetate 80% of the desired product was observed (eq. 4).

We have found that the dimethyl-mercaptal group is very quickly alcoholyzed in the presence of strong acids. By this reaction acetoacetic esters are obtained in good yields (eq. 5).

(5)
$$\mathbf{R}_1 \operatorname{coc}(\mathbf{R}_2) = \operatorname{C}(\operatorname{scH}_3)_2 \xrightarrow{\mathbf{R}_3 \operatorname{OH}} \mathbf{R}_1 \operatorname{coc}(\mathbf{R}_2)_2 \xrightarrow{\mathbf{H}_2 \operatorname{O}} \operatorname{Rcoc}(\mathbf{R}_3)_2 \xrightarrow{\mathbf{H}_3 \operatorname{O}} \operatorname{Rcoc}(\mathbf{R}_3)_3 \xrightarrow{\mathbf{H}_3 \operatorname{O$$

This reaction can be carried out without isolating the ketene-mercaptals (eqs. 6 and 7).

- (6) $\mathbb{R}_1 \operatorname{coch}_2 \mathbb{R}_2 \longrightarrow \mathbb{R}_1 \operatorname{coch}_2 \operatorname{coor}_3$
- (7) $\mathbb{R}_{1}^{CH} \xrightarrow{2}{}_{2}^{COCH} \xrightarrow{\mathbb{R}}{}_{3}^{COCH} \xrightarrow{\mathbb{R}}_{3}^{COCH} \xrightarrow{CHCOCHR}_{2}^{COOR}$

For example: To the benzene solution of 1-(4-methoxyphenyl)-3-dimercaptomethylpropen-1-one (former example), 20 ml ethanol and 1 g p-toluenesulphonic acid are added. The mixture is stirred for 2 hours at room temperature and refluxed for 15 min. After washing with bicarbonate the solution was evaporated and yielded 7.4 g (90%) of ethyl-4-methoxybenzoylacetate b.p. 139-142°/0.8 mm. Results with several other ketones are summarized in Table III.

Table III

Alcoholysis of dimethyl mercaptals prepared from ketones (eqs. 6 and 7)

Starting ketone	Product	b.p.	Yield	
Acetophenone	Ethylbenzoylacetate	130-2 ⁰ /1	90%	
4-Methoxyacetophenone	Ethyl-4-methoxybenzoylacetate	139-42 ⁰ /0.8mm	81%	
Diethylketone	2,4-Dimethyl-3-ketoglutarate	131-4°/0.4mm	91 %	

References

- 1) M. Apitzch, <u>Ber.</u>, <u>38</u>, 2888 (1905).
- 2) Th. Gompper and W. Töpft, <u>Ber.</u>, <u>95</u>, 2861 (1962).
- 3) A. Thuillier and J. Vialle, <u>Bull. Soc. chim. France</u>, 2182, (1962).
- 4) A. Thuillier and J. Vialle, Bull. Soc. chim. France, 1978 (1959).
- 5) C. Kelber, <u>Ber.</u>, <u>43</u>, 1252 (1910).
- 6) M. Saquet and A. Thuillier, Bull. Soc. chim. France, 2841 (1967).
- 7) M. Saquet, <u>C. R. Acad. Sci. Paris</u>, <u>C</u> 266, 820 (1966).
- 8) J. Sandstrom and I. Wennerbeck, Acta Chem. Scan., 1191 (1970).
- 9) Th. Gompper and W. Töpft, <u>Ber.</u>, <u>95</u>, 2871 (1962).
- 10) Th. Gompper and W. Töpft, Ber., 95, 2881 (1962).